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Abstract—This research implements existing audio onset de-
tection algorithms to analyze flute audio signals. The motivation
for this research is to determine which techniques work better
for real-time analysis. By methodically analyzing several well-
known, pre-existing onset detection algorithms using a solo flute
audio signal, exemplary audio features and analysis techniques
will be determined. Flute audio signals are unique, in that they
mimic pure sinusoidal tendencies more so than other woodwind
audio signals. The analysis of these algorithms will contribute to
the field of research in flute note onset detection.

Index Terms—audio signal processing, music information re-
trieval, analysis, automatic algorithm, flute signal

I. INTRODUCTION

Since the genesis of music information retrieval (MIR) as
a research field, many researchers have built algorithmic tools
for performing audio signal processing and analysis to study
various aspects of musical instruments, music compositions,
and performance attributes [1]–[4]. There are active interna-
tional research groups and communities, including the Inter-
national Society for Music Information Retrieval (ISMIR)1

and the Music Information Retrieval Evaluation eXchange
(MIREX)2, whose goal it is to design, refine, and test various
algorithms and tools for music information retrieval.

There are several levels to Music Information Retrieval:
• High-level representations: style, musical expression.

• Mid-level representations: melody, key and chord,
note/event, beat per minute, rhythm.

• Low-level representations: Mel-frequency cepstral coeffi-
cients, complex domain, Fast Fourier Transform (FFT).

Low-level representations, or descriptors, are the measurable
properties of the mid-level and high-level representations that
are extracted from a music signal. They contain information
relevant for pattern recognition, such as beat tracking. A
contribution of this research is revealing ways to present
musical expression as a quantifiable multi-dimensional space
of feature vectors by using timing and rhythm as the basis.

II. FLUTE SIGNAL PROCESSING

Figure 1 shows the musical signals of a snare hit (in pink)
and of a flute note (in blue) represented as both a waveform
and an amplitude envelope in the time domain. Temporarily
setting aside factors such as the frequency content, spectral
content, and the amplitude, the visual difference between the

1http://www.ismir.net/
2http://www.music-ir.org/mirex/wiki

Fig. 1: Waveforms and exponential approximations of the
amplitude envelopes for snare (top) and flute (bottom)

two musical signals shows a steep, impulsive attack of the
snare hit compared to a gentle, gradual attack of the flute
note. The distinctions between the duration of the two attacks
(even in those first few milliseconds) and shapes of the slopes
(linear versus non-linear) are important factors to consider
when determining a musical event. The percussive nature of
the snare hit, where there is a fast change in amplitude over
time, allows for a much clearer detection of note onset than
the non-percussive, slow ramp of the flute note. The amplitude
envelope of a snare hit can be described as attack-release
(AR), whereas the amplitude envelope of a flute note is can
be described as attack-decay-sustain-release (ADSR).

Fig. 2: Physical Onset (A), Perceptual Onset (B), and Percep-
tual Attack Time (C) of a flute note

Of all the physical instruments (including voice), flute is
closest to a purely sinusoidal and harmonic signal. While a
single flute note might have sinusoidal tendencies, flute music
is complex, unique, and often difficult to extrapolate general-
izable features, especially among a range of flutists. Soft, or



legato, articulations create ‘muddied’ results, especially with
several notes in succession [3]–[5]. Pitched, non-percussive
notes, like those from a flute signal, can be represented as
a physical onset (when the amplitude peaks from zero), a
perceptual onset (when the sound becomes audible), and/or
a perceptual attack time (when the rhythmic emphasis is
perceived) [6], [7], as seen in Figure 2, which shows a note
of mid-range and moderate loudness level.

A. Soft Onsets and Vibrato

The long note onset of the flute (anywhere from 40-120
milliseconds, as seen in Figure 3) and the tendency towards
natural manifestation of vibrato exposes challenges in properly
detecting note onsets. Figures 3 and 4 exemplify two features
that could cause indeterminacy in detecting note onset: the
fundamental (F0) and harmonic (FN) frequencies, as well as
long and/or soft note onset. The top portion of each figure
is the waveform representation. The bottom portion is the
spectrogram representation, where the color of the frequency
dictates the energy (yellow is high energy at a particular
frequency bin, and blue is low energy).

Fig. 3: Onset Profiles: Soft, Medium, Loud. Audio waveform
(in blue) and RMS amplitude profile (in green).

“Vibrato associated frequency and amplitude modulation
provides problems to traditional energy based onset detectors,
which tend to record many false positives as they follow
the typically 4-7 Hz oscillation” [4]. This range translates
respectively to 250-147 milliseconds. Figure 4 shows various
vibrato profiles in waveform representation (in blue) with an
overlay (in green) of the root-mean-square (RMS) amplitude
profile. Note the oscillatory nature of the RMS function in the
rightmost waveform in Figure 4. This shows strong vibrato,
whereas the middle waveform depicts a medium strength
vibrato. The leftmost waveform has few oscillations and is
almost steady state.

III. USING AND ADAPTING EXISTING ALGORITHMS

“Time-domain methods for producing onset detection func-
tions are possible, but [the] most current techniques convert the
signal to the frequency or complex domain” [8]. Iterating on
and extending the work by Bello [6], [9] and Dixon [10], and
constraining requirements to flute tudes, this section details the
use and adaptation of several automatic audio onset detection
algorithms. The following sections each provide a high-level
overview of a given algorithm, its tuned variable parameter
settings based on domain knowledge of flute signals, applied
theory, and empirical testing, and its performance outcome.

Fig. 4: Weak, medium, and strong vibrato profiles (left to
right). Audio waveforms (in blue) and RMS amplitude profile
(in green) depict the oscillatory nature of the signal.

Further information about each algorithm can be found in its
associated reference.

A. Statistical Analysis

The tolerated baseline assessment, or ground truth, for
each of the five experienced flutist’s recordings are generated.
The ground truth, which is subject to human perception,
was compared to an algorithm’s outcome. Statistical analysis
between the established ground truth and annotations from
the experienced flutist was run to determine an algorithm’s
performance. An algorithm’s ability to discern whether or not
an observed musical event is a proper note onset was under
review. The goal is to achieve the highest number of true
positives and the least amount of false positives and false
negatives. These algorithms were analyzed based on a ratio
of true positives to false positives and false negatives using
the statistical operations: Precision, Recall, and F-measure,
described below.3 These evaluation metrics are commonly
used in MIREX to assess an algorithm’s viability.4

• Precision (P), or positive predictive value, is the number
of correctly identified onsets (true positives) divided by
all of the identified instances (true positives and false
positives).

• Recall (R), or sensitivity, is the number of correctly
identified onsets (true positives) divided by the properly
identified instances (true positives and false negatives).

• F-measure (F) is the harmonic mean of precision and
recall, as in Equation 1.

F = 2 · P ·R
P +R

(1)

If an algorithm’s peak picking threshold was set too high or
too low, then the computer was more likely to indicate a note
onset where there is not meant to be one (false positive), or
not indicate a note onset where there is meant to be one (false
negative). The preferred outcome from an automatic algorithm
would show a high number of correctly identified note onsets
(true positives) and yield an F-measure closest to 1.0 of ideal.

3Much of this methodology is adopted from Dixon’s research concerning
onset detection [10].

4http://www.music-ir.org/mirex/wiki/2016:Audio Onset Detection



B. On Evaluating Offline Algorithms

“State-of-the-art onset detection algorithms are still far from
retrieving perfect results, thus requiring human corrections in
situations where accuracy is a must” [11]. The total number
of correctly identified note onsets for this excerpt is 44.
The manual markings provided by music researchers are
similar, where 96% of the outcomes are within an acceptable
tolerance of 40 milliseconds.5 If an automatic algorithm is
within this tolerance, then that algorithm can be considered a
success. However, an automatic algorithm cannot be expected
to perform better than a human would for detecting perceptual
onsets, as the ground truth is currently our best representation,
and therefore, any deviation from ground truth will not be
reinforced in an automatic algorithm. It is unacceptable for
a real-time analysis algorithm meant to convey performance
characteristics to incorrectly identify note onsets. As such,
maximizing the percentage of ideal will be the focus of this
research when assessing approaches towards achieving stable
onset detection.

C. Existing Onset Algorithms

The mechanisms by which these algorithms calculate note
onset include: a variant of Fast Fourier Transform (to de-
termine pitch by way of fundamental frequency - F0), or
an analysis in the temporal or spectral domain using low-
level features (such as complex domain or broadband spectral
energy). Each algorithm has been peer-reviewed at a renowned
international conference, such as ISMIR. An F-measure of
around 0.7 is considered successful in MIREX6. However,
acquiring a rating closer to 0.90 would be more beneficial
for real-time beat detection.

In order to maximize frequency resolution of the FFT,
the relationship between the sampling rate of 44.1 kHz and
an FFT bin size of 16384 samples and FFT hop size7 of
8192 samples are the preferred windowing settings. The
32770/16384 window and hop size provide a fraction of the
necessary proper note onsets (as the window is too large and
misses infrequent events). Smaller window and hop size of, for
example, 8192/4096 conversely provide too many note onsets.
However, for musical features that change rapidly (such as
those discussed below in the aubio and pyin algorithms), a
window size of 1024 samples with hop size of 512 is preferred.

1) MIRToolbox: The offline MIRToolbox framework in-
cludes an extensive integrated collection of operators and
feature extractors specific to music analysis [1]. MIRToolbox
has a wide range of feature extractors available. It is an
ongoing research project designed by Olivier Lartillot to
determine “which musical parameters can be related to the
induction of particular emotion when playing or listening to
music” [12]. The mironsets function, a signal-based method,
shows “a temporal curve where peaks relate to the position

5This tolerance is intended to improve on Dixon’s work [10], where the
accepted tolerance is 50 ms.

6http://nema.lis.illinois.edu/nema out/mirex2016/results/aod/
7A 2:1 ratio of bin size to hop size is a commonly practiced standard

https://ccrma.stanford.edu/ jos/parshl/Choice Hop Size.html

of note onset times, and estimates those note onset posi-
tions” [12], as such “a local maximum will be considered
as a peak if its distance with the previous and successive
local minima (if any) is higher than the contrast parameter”
[12]. There are three optional arguments included with this
function, including ‘Envelope’ (which computes an amplitude
envelope), ‘Complex’ within ‘Spectral Flux’ settings (which
computes the spectral flux in the complex domain), and ‘Pitch’
(which computes frame-decomposed autocorrelation, as well
as the novelty curve of the resulting similarity matrix). The
‘Spectral Flux’ option computes the temporal derivative of
the spectrum [12]. The ‘Complex’ option, adopted from [9],
combines information from both the energy and phase of the
signal. This means calculations are occurring in the temporal
domain, rather than the frequency domain. Peaks in the onset
detection curve profiles of the audio signal (signifying bursts
of energy) correspond to note onset.

Table I displays the results achieved by analyzing the five
flutists and the representation of the computer-translated mu-
sical score (CTMS) generated by MIDI using MIRToolbox’s
algorithm. The F-measure ranges from 0.33-0.48, with an
average of 0.399 of ideal. The Precision values are closer
to zero because there was a high quantity of false positives,
which decreases the ratio of true positives to true positives
plus false positives. This was possibly due to a sensitive peak
picking threshold incorrectly marking vibrato oscillations as
note onsets. The Recall values are closer to 1.0 because few
false negatives are detected, resulting in a ratio of true positives
to true positives plus false negatives approaching the ideal
case of 1.0. This is means that soft note onsets were properly
detected among all recordings. However, two of the drawbacks
of this implementation is that it is only available offline, which
does not suit the purpose of this research: real-time feedback,
and, while it does correctly mark true positives, there are too
many false positives.

Fig. 5: This example shows how true note onsets (in green)
relate to perceived note onsets (in purple) of MIRToolbox.

Figure 5 depicts true note onsets and perceived note onsets.
The waveform and spectrogram representation are each over-
laid with note onsets; the bright green annotations mark true
note onsets from the baseline assessment and the bright purple
notations mark note onsets observed by the algorithm. There
are 11 true note onsets in this particular selection of music,
however the algorithm observes 21. Of those 21, 11 are within
the tolerated threshold of 40 ms. This shows that all the proper
true note onsets are detected by MIRToolbox, however extra



notes are also observed (most likely due to the sensitivity of
the peak picking algorithm).

2) University of Alicante: Researchers at University of
Alicante developed a signal-based interactive onset detection
algorithm8. They approach “onset detection as a classifica-
tion problem” [13], by using machine learning techniques to
extract note onsets. After extracting audio features (such as
energy, pitch, phase, or a combination of these) every few
milliseconds, they implement a k-Nearest Neighbors classifier9

to determine whether an event is an onset or a non-onset.
This implementation is different from the algorithm within
MIRToolbox in that it uses a machine learning technique to
classify musical events.

The variable parameters were tuned to the system with a
peak picking sensitivity of 20%, an FFT bin size of 16384,
and an increment size of 8192 [11], [13]. Table I displays
the results from University of Alicante’s algorithm achieved.
The average F-measure is relatively consistent among all five
performances, at an average 0.75 of ideal. There is a similar
quantity of false positives as there are false negatives, so
the ratios of detected onsets to proper onsets (Precision and
Recall) are within a standard deviation of 0.1. This means that
the extracted audio features (currently unknown to the user)
from each of the recordings used in the kNN exhibit similar
tendencies and are consistently observed by this algorithm.

One example of how the algorithm’s output compares to
true note onsets is pictured in Figure 6. There are 11 true
note onsets in this particular selection of music, however the
algorithm observes 13. Of those 13, 10 are within the tolerated
threshold of 40 ms. This means that, while some of the proper
true note onsets are detected, there are two false positives
present, lowering the percentage of ideal.

Fig. 6: This example shows how true note onsets (in green)
relate to perceived note onsets (in purple) of Alicante.

3) QMUL: This onset detection algorithm plug-in was
developed by Chris Duxbury, Juan Pablo Bello, Mike Davies,
and Mark Sandler at the Queen Mary University of London.
This signal-based method combines energy-based approaches
(observing a signal’s energy) and phase-based approaches
(observing the deviations of the FFT state), which together
form the complex domain. It includes an adaptive whitening

8http://grfia.dlsi.ua.es/repositori/grfia/otros/interactive-onset-detection.pdf
9The k-Nearest Neighbors algorithm is a method popularly used for

classification, clustering, and regression analysis of points in closest proximity
to one another.

component10 that smooths the temporal and frequency varia-
tion in the signal so that large peaks in amplitude are more
apparent by “bringing the magnitude of each frequency band
into a similar dynamic range” [8]. By examining the spread
of the attack transient distribution, as well as energy-based
methods, the QMUL algorithm can “increase the effectiveness
for less salient onsets” [2], such as long or soft flute note
onsets. This algorithm calculates the likelihood an onset will
occur within each frequency bin based on peaks in the complex
domain, and uses a peak picking algorithm to mark an onset.

Fig. 7: This example shows how true note onsets (in green)
relate to perceived note onsets (in purple) of QMUL.

Table I displays the results achieved using the Complex
Domain algorithm. The variable parameters were tuned to the
system with a sensitivity of 50%, an FFT bin size of 16384, an
increment size of 8192, and a Blackman-Harris window shape
[2], [8], [14]. The F-measure ranges from 0.34-0.62, with an
average of 0.46 of ideal. The ratio of true positives to false
positives and negatives is similar to that of the MIRToolbox
algorithm. For Player 3, Precision is closer to zero than for any
other player, which means it was difficult for the algorithm to
correctly identify onsets. This could be due to the fact that
Player 3’s recording is somewhat softer in amplitude than the
other recordings because the articulation used by the musician
is legato and the musician exhibits deep vibrato, which is
erroneously detected by the algorithm as an onset.

Comparing the results from QMUL to true note onsets is
shown in Figure 7. There are 11 true note onsets in this
particular selection of music, however the algorithm observes
16. Of those 16, only 3 are within the tolerated threshold of 40
ms. This is an example of how poorly this algorithm performs.

4) aubio: The aubio library was developed by Paul M.
Brossier at the Centre for Digital Music at Queen Mary
University of London. This real-time, signal-based onset de-
tection algorithm functions similarly to the QMUL algorithm
presented above. “A modified autocorrelation of the onset
detection function is ... computed to determine the beat period
and phase alignment [of the music]. Based on the detected
period and phase, beats are predicted” [15]. This offline algo-
rithm has two primary variable parameters: a threshold value
from 0.01 to 0.99 (for peak picking) and an onset mode (for
detection functions, including high frequency content, complex
domain, energy, and spectral difference). As described in the

10“A new method for preprocessing short-term Fourier transform phase-
vocoder frames for improved performance on real-time onset detection” for
slow onsets, like flute signals [8].



research by Dixon [6], using the complex domain is a preferred
method for analysis, given the nature of the flute signal. The
variable parameters were tuned to the system with an FFT
bin size of 1024, an increment size of 512, a peak picking
threshold of 0.5, a -50 dB silence threshold (reducing this
allows low energy onsets to be observed), and a minimum
inter-onset interval of 40 ms (two consecutive onsets will not
be detected within this interval). A window size of 1024 and
hop size of 512 was sufficient, due to the phase vocoder (which
is used to obtain a time-frequency representation of the audio
signal) [16]. The algorithm’s superior ability to specifically
observe long, slow note onsets [16] is a preferred feature of
this algorithm. Changing the peak picking algorithm threshold
lower or higher results in too many or too few onsets.

Table I displays the results achieved by analyzing the
six recordings using aubio’s algorithm. There are slightly
more false results detected in aubio’s algorithm compared to
Alicante’s, giving an average F-measure of 0.59 of ideal.

Fig. 8: This example shows how true note onsets (in green)
relate to perceived note onsets (in purple) of aubio.

One comparison between ground truth and aubio’s output is
pictured in Figure 8. There are 11 true note onsets (marked in
green) in this music selection, however the algorithm (marked
in purple) observes 17. Of those 17, 11 are within the tolerated
threshold of 40 ms. Similar to the MIRToolbox algorithm,
all 11 true note onsets in this section of music are properly
discovered.

5) pyin: The pyin algorithm is a real-time modification of
the well-known, frame-wise YIN algorithm for fundamental
frequency (F0) estimation in monophonic audio signals [17]
that produces pitch candidate probabilities as observations
in a Viterbi-decoded Hidden Markov Model [18]. YIN is a
term that “alludes to the interplay between autocorrelation
and cancellation that it involves” [17] when estimating F0.
Pyin was developed by researchers Matthias Mauch and Simon
Dixon at QMUL and extends the work by deCheveigne et
al. [17]. It is different than the aforementioned algorithms in
that it is designed to detect pitch, rather than explicit note
onset, and is a probability-based method. It extracts multiple
pitch candidates for given frequency ranges [19]. However,
because the design of the algorithm annotates a timestamp
along with the fundamental frequency estimation, it proves a
valid contender for onset detection. This information is used
to extrapolate note onset. The variable parameters were tuned
to the system with an FFT bin size of 1024 samples, an
increment size of 512, a YIN threshold distribution (which

is a set of pitch candidates with associated probabilities) set
to uniform11, a suppression of low amplitude pitch estimates
at 0.1 (which suppresses amplitudes below a certain value),
and an onset sensitivity (equivalent to peak picking) of 0.7.
The onset sensitivity changes how many onsets are detected.

Table I displays the results achieved by analyzing the six
recordings using pyin’s algorithm [18], [19]. The results from
pyin are reminiscent of those from Alicante’s algorithms,
where the quantity of false positives is similar to the quantity
of false negatives. The results make up approximately half
of the properly detected onsets across all of the recordings.
This algorithm has a better average F-measure (0.71 of ideal),
similar to Alicante’s results.

Fig. 9: This example shows how true note onsets (in green)
relate to perceived note onsets (in purple) of pyin

One example of how the results from the pyin calculation
compares to true note onsets is pictured in Figure 9. There
are 11 true note onsets in this particular selection of music,
however the algorithm perceives 16. Of those 16, all 11 true
note onsets in this section of music are properly discovered.

D. Reflections on Onset Detection

The intention of this study is to examine the outcomes of
previously tested note onset detection algorithms in order to
observe which approach would best perform for solo flute
signals. Several factors, based on the nature of the flute signal,
impact the outcomes of the aforementioned algorithms. These
factors include the long slope onset of the flute, legato (soft or
gentle) articulation, and deep vibrato warble. During a legato
articulation, the beginning of a note could be missed. Several
of the automatic algorithms would incorrectly mark a warble in
vibrato as a note onset if, for example, the parameters (such a
peak picking threshold) were set too low - such as 0.25 instead
of 0.5 or 0.75 - (as shown in Figure 10), or if the window size
was too short. A false positive could be triggered by a strong
vibrato.

For example, an algorithm’s variable parameters are tuned
such that it properly detects 75% of the actual note onsets.
If the parameters are modified such that 100% of the actual
note onsets are recognized, this results in more false positives
and false negatives, as other features (such as vibrato) trigger
incorrect onsets. This is unsuitable for real-time analysis of
beat detection.

11Several F0 candidates are obtained for each frame based on parameter
distribution [18], [19]



Fig. 10: This example shows low peak picking threshold (0.25)
in red, medium peak picking threshold (0.5) in orange, high
peak picking threshold (0.75) in white

TABLE I: Precision (P), Recall (R), and F-measure (F) for Var-
ious Automatic Algorithms. CTMS represents the computer-
translated musical score.

Player
1

Player
2

Player
3

Player
4

Player
5

CTMS

MIRToolbox
P:0.3071 P:0.2143 P:0.2123 P:0.2516 P:0.2616 P:0.3462
R:0.8864 R:0.7501 R:0.8637 R:0.8864 R:0.7728 R:0.8183
F:0.4562 F:0.3334 F:0.3408 F:0.3920 F:0.3909 F:0.4866

Alicante
P:0.8422 P:0.7047 P:0.7348 P:0.8050 P:0.6978 P:0.8650
R:0.7274 R:0.7047 R:0.8183 R:0.7501 R:0.6820 R:0.7274
F:0.7806 F:0.7047 F:0.7743 F:0.7766 F:0.6898 F:0.7902

QMUL
P:0.8828 P:0.8132 P:0.8132 P:0.8232 P:0.7157 P:0.8752
R:0.3412 R:0.2958 R:0.2958 R:0.3185 R:0.2277 R:0.4775
F:0.4922 F:0.4338 F:0.4338 F:0.4595 F:0.3455 F:0.6179

aubio
P:0.6401 P:0.3685 P:0.6831 P:0.4376 P:0.4784 P:0.5791
R:0.7274 R:0.6366 R:0.6366 R:0.7956 R:0.7501 R:0.7501
F:0.6810 F:0.4668 F:0.6590 F:0.5646 F:0.5842 F:0.5842

pyin
P:0.6605 P:0.5274 P:0.7858 P:0.7335 P:0.6925 P:0.8206
R:0.7956 R:0.6593 R:0.7501 R:0.7501 R:0.6138 R:0.7274
F:0.7218 F:0.5860 F:0.7676 F:0.7417 F:0.6508 F:0.7712

Table I collates the results gathered from the algorithms.
These results correlate to the results from MIREX12, corrob-
orating the performances of the algorithms. The algorithms’
performances are impacted by the difficulty in mathematically
analyzing complex musical signals. Musical features such as
a legato articulation and vibrato might be mathematically
similar to a note onset, which is why some of the algorithms
incorrectly identified note onsets. The lowest F-measures come
from the MIRToolbox (Player 2 and 3) and QMUL (Player
3) algorithms, which means the audio features were not
prominent enough to detect proper note onset. The highest
F-measures come from the Alicante (Player 3 and 4) and pyin
(Player 3 and CTMS) algorithms. It is interesting to note that
Player 3 gives both the highest and the lowest F-measures of a
given algorithm. This shows how the algorithmic approaches
yield different outcomes for the same recording.

IV. DISCUSSION ON ONSET DETECTION ALGORITHMS

Despite best efforts to use automatic onset detection algo-
rithms tailored specifically for flute audio signals, there still ex-
ists an unacceptable number of false positives and negatives (as
represented in Table I). This is accentuated when attempting to
perform analyses in real-time, as there is a trade-off between

12http://nema.lis.illinois.edu/nema out/mirex2016/results/aod/summary.html

high performance and latency. If successive notes are repeated
with a legato articulation, even an aural evaluation shows the
events are difficult to distinguish. The higher performance
algorithms (such as pyin) use frequency detection, however
a delay exists when calculating the fundamental frequency in
real-time (as seen in Figure 9). Additionally, vibrato could
be incorrectly perceived as note onsets, and soft articulations
could be missed if the peak picking algorithms are tuned such
that all true note onsets are properly detected. If the peak
picking threshold is tuned too low, there will too many note
onsets. If the peak picking threshold is tuned too high, there
will be missed note onsets. These algorithms have difficulty
distinguishing actual note onsets, therefore, another approach,
such as adding gesture signals, would be required for real-time
observation of flute note onset.
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